Název: Neural-Based Segmentation Technique for Arabic Handwriting Scripts
Autoři: Al Hamad, Husam A.
Citace zdrojového dokumentu: WSCG 2013: Communication Papers Proceedings: 21st International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision in co-operation with EUROGRAPHICS Association, p. 9-14.
Datum vydání: 2013
Nakladatel: Václav Skala - UNION Agency
Typ dokumentu: konferenční příspěvek
conferenceObject
URI: http://wscg.zcu.cz/WSCG2013/!_2013-WSCG-Communications-proceedings.pdf
http://hdl.handle.net/11025/10640
ISBN: 978-80-86943-75-6
Klíčová slova: arabské ruční písmo;rozpoznávání obrazu;neuronové sítě;heuristický segmentér
Klíčová slova v dalším jazyce: arabic handwriting;image recognition;neural networks;heuristic segmenter
Abstrakt: In some algorithms, segmentation of the word image considers the first step of the recognition processes; the main aim of this paper is proposed new fusion equations for improving the segmentation of word image. The technique that has used is divided into two phases; at the beginning, applying the Arabic Heuristic Segmenter (AHS), AHS uses the shape features of the word image, it employs three features, remove the punctuation marks (dots), ligature detection, and finally average character width, the goal of this technique is placed the Prospective Segmentation Points (PSP) in the whole parts of the word image. As a result, the second phase apply the neuralbased segmentation technique, the goal of neural technique is check and examine all PSPs in the word image in order to report which one is valid or invalid, this will increase the accuracy of the segmentation; to do that, the network obtains a fused value from three neural confidences values: 1) Segmentation Point Validation (SPV), 2) Right Character Validation (RCV), and 3) Central Character Validation (CCV) which will assess each PSP separately. The input vectors of the neural network are calculated based on Direction Feature (DF), DF considers much more suitable for Arabic Scripts. AHS and neural-based segmentation techniques have been implemented and tested by local benchmark database.
Práva: © Václav Skala - UNION Agency
Vyskytuje se v kolekcích:WSCG 2013: Communication Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
Hamad.pdfPlný text746,55 kBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/10640

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.