Název: Selection of an Optimal Set of Discriminative and Robust Local Features with Application to Traffic Sign Recognition
Autoři: Höferlin, Benjamin
Heidemann, Gunther
Citace zdrojového dokumentu: WSCG 2010: Full Papers Proceedings: 18th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision in co-operation with EUROGRAPHICS, p. 9-16.
Datum vydání: 2010
Nakladatel: Václav Skala - UNION Agency
Typ dokumentu: konferenční příspěvek
conferenceObject
URI: http://wscg.zcu.cz/WSCG2010/Papers_2010/!_2010_FULL-proceedings.pdf
http://hdl.handle.net/11025/10857
ISBN: 978-80-86943-88-6
Klíčová slova: diskriminační místní znaky;rozpoznávání dopravních značek
Klíčová slova v dalším jazyce: discriminative local features;traffic sign recognition
Abstrakt: Today, discriminative local features are widely used in different fields of computer vision. Due to their strengths, discriminative local features were recently applied to the problem of traffic sign recognition (TSR). First of all, we discuss how discriminative local features are applied to TSR and which problems arise in this specific domain. Since TSR has to cope with highly structured and symmetrical objects, which are often captured at low resolution, only a small number of features can be matched correctly. To alleviate these issues, we provide an approach for the selection of discriminative and robust features to increase the matching performance by speed, recall, and precision. Contrary to recent techniques that solely rely on density estimation in feature space to select highly discriminative features, we additionally address the question of features’ retrievability and positional stability under scale changes as well as their reliability to viewpoint variations. Finally, we combine the proposed methods to obtain a small set of robust features that have excellent matching properties.
Práva: © Václav Skala - UNION Agency
Vyskytuje se v kolekcích:WSCG 2010: Full Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
Hoferlin.pdfPlný text1,61 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/10857

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.