Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaudet, V.
dc.contributor.authorBeuve, M.
dc.contributor.authorJaillet, F.
dc.contributor.authorShariat, B.
dc.contributor.authorZara, F.
dc.contributor.editorChen, Min
dc.contributor.editorSkala, Václav
dc.date.accessioned2014-03-26T12:36:08Z-
dc.date.available2014-03-26T12:36:08Z-
dc.date.issued2009
dc.identifier.citationWSCG '2009: Full Papers Proceedings: The 17th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision in co-operation with EUROGRAPHICS: University of West Bohemia Plzen, Czech Republic, February 2 - 5, 2009, p. 145-152.en
dc.identifier.isbn978-80-86943-93-0
dc.identifier.urihttp://wscg.zcu.cz/WSCG2009/Papers_2009/!_WSCG2009_Full_final.zip
dc.identifier.urihttp://hdl.handle.net/11025/10900
dc.description.abstractBesides finite element method, mass-spring systems are widely used in Computer Graphics. It is indubitably the simplest and most intuitive deformable model. This discrete model allows to perform interactive deformations with ease and to handle complex interactions. Thus, it is perfectly adapted to generate visually plausible animations. However, a drawback of this simple formulation is the relative difficulty to control efficiently physically realistic behaviors. Indeed, none of the existing models has succeeded in dealing with this satisfyingly. We demonstrate that this restriction cannot be over-passed with the classical mass-spring model, and we propose a new general 3D formulation that reconstructs the geometrical model as an assembly of elementary hexahedral "bricks". Each brick (or element) is then transformed into a mass-spring system. Edges are replaced by springs that connect masses representing the vertices. The key point of our approach is the determination of the stiffness springs to reproduce the correct mechanical properties (Young’s modulus and Poisson’s ratio) of the reconstructed object. We validate our methodology by performing some numerical experiments. Finally, we evaluate the accuracy of our approach, by comparing our results with the deformation obtained by finite element method.en
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencycs
dc.relation.ispartofseriesWSCG '2009: Full Papers Proceedingsen
dc.rights© Václav Skala - UNION Agencyen
dc.subjectdiskrétní modelovánícs
dc.subjectfyzikální simulacecs
dc.subjectmetoda konečných prvkůcs
dc.titleIntegrating Tensile Parameters in Hexahedral Mass-Spring System for Simulationen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.subject.translateddiscrete modelingen
dc.subject.translatedphysical simulationen
dc.subject.translatedfinite element methoden
dc.type.statusPeer-revieweden
dc.type.driverinfo:eu-repo/semantics/conferenceObjecten
dc.type.driverinfo:eu-repo/semantics/publishedVersionen
Appears in Collections:WSCG '2009: Full Papers Proceedings

Files in This Item:
File Description SizeFormat 
Baudet.pdfPlný text749,33 kBAdobe PDFView/Open


Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/10900

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.