Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorIvanovska, Tetyana
dc.contributor.authorLinsen, Lars
dc.contributor.editorRossignac, Jarek
dc.contributor.editorSkala, Václav
dc.date.accessioned2014-04-08T10:07:01Z-
dc.date.available2014-04-08T10:07:01Z-
dc.date.issued2007
dc.identifier.citationWSCG '2007: Full Papers Proceedings: The 15th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2007 in co-operation with EUROGRAPHICS: University of West Bohemia Plzen Czech Republic, January 29 – February 1, 2007, p. 65-72.en
dc.identifier.isbn978-80-86943-98-5
dc.identifier.urihttp://wscg.zcu.cz/wscg2007/Papers_2007/full/!WSCG2007_Full_Proceedings_Final-1.zip
dc.identifier.urihttp://hdl.handle.net/11025/10991
dc.description.abstractMost medical scanning techniques generate scalar fields, for which a large range of segmentation algorithms exists. Some scanning techniques like cryosections, however, generate color data typically stored in RGB format. Since standard segmentation algorithms such as isosurface extraction, level-set and region growing methods all have their advantages and drawbacks and many extensions and specializations of the algorithms have been developed to solve specific problems, one would need to generalize all these approaches to color data to have the full range of algorithmic solutions at hand. A more viable way to proceed is to convert the color data field to a scalar field in a preprocessing step, which allows for the direct application of all above-mentioned segmentation approaches. We propose a procedure that converts color to scalar data while preserving the properties that are important for segmentation purposes. We first convert the colors from RGB to L∗a∗b∗ color space, which separates the luminance channel from the chrominance channels and distributes the chrominance with respect to human perception. Then, we cluster the colors present in the data using a number of approaches and discuss the advantages and drawbacks. In order to assign to each cluster an appropriate scalar value, we use the ideas of the recently presented Color2Gray algorithm and generalize it for application to volume data. The Color2Gray algorithm in its originally proposed form is too inefficient to be applied to volume data, but a restructuring of the algorithm coupled with a prior clusterization step allows us to apply the algorithm even to large volume data. We segment the resulting scalar field using standard segmentation algorithms and discuss our results in comparison to standard conversion resultsen
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencycs
dc.relation.ispartofseriesWSCG '2007: Full Papers Proceedingsen
dc.rights© Václav Skala - UNION Agencyen
dc.subjectlékařské zobrazovánícs
dc.subjectvizualizace datcs
dc.subjectRGB objemová datacs
dc.subjectsegmentace datcs
dc.titleConverting RGB Volume Data to Scalar Fields for Segmentation Purposesen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.subject.translatedmedical imagingen
dc.subject.translateddata visualizationen
dc.subject.translatedRGB volume dataen
dc.subject.translateddata segmentationen
dc.type.statusPeer-revieweden
dc.type.driverinfo:eu-repo/semantics/conferenceObjecten
dc.type.driverinfo:eu-repo/semantics/publishedVersionen
Vyskytuje se v kolekcích:WSCG '2007: Full Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
Ivanovska.pdfPlný text2,03 MBAdobe PDFZobrazit/otevřít
Ivanovska_prezentace.pptPrezentace9,03 MBMicrosoft PowerpointZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/10991

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.