Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorWasenmüller, Oliver
dc.contributor.authorKrolla, Bernd
dc.contributor.authorMichielin, Francesco
dc.contributor.authorStricker, Didier
dc.contributor.editorSkala, Václav
dc.date.accessioned2017-10-10T06:44:36Z
dc.date.available2017-10-10T06:44:36Z
dc.date.issued2014
dc.identifier.citationWSCG 2014: communication papers proceedings: 21st International Conference in Central Europeon Computer Graphics, Visualization and Computer Visionin co-operation with EUROGRAPHICS Association, p. 57-64.en
dc.identifier.isbn978-80-86943-71-8
dc.identifier.uriwscg.zcu.cz/WSCG2014/!!_2014-WSCG-Communication.pdf
dc.identifier.urihttp://hdl.handle.net/11025/26378
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencycs
dc.relation.ispartofseriesWSCG 2014: communication papers proceedingsen
dc.rights@ Václav Skala - UNION Agencycs
dc.subjectpočítačové viděnícs
dc.subjecthustá 3D rekonstrukcecs
dc.subjectperspektiva SfMcs
dc.subjectrekonstrukce s více pohledycs
dc.titleCorrespondence chaining for enhanced dense 3D reconstructionen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedWithin the computer vision community, the reconstruction of rigid 3D objects is a well known task in current research. Many existing algorithms provide a dense 3D reconstruction of a rigid object from sequences of 2D images. Commonly, an iterative registration approach is applied for these images, relying on pairwise dense matches between images, which are then triangulated. To minimize redundant and imprecisely reconstructed 3D points, we present and evaluate a new approach, called Correspondence Chaining, to fuse existing dense twoview 3D reconstruction algorithms to a multi-view reconstruction, where each 3D point is estimated from multiple images. This leads to an enhanced precision and reduced redundancy. The algorithm is evaluated with three different representative datasets. With Correspondence Chaining the mean error of the reconstructed pointclouds related to ground truth data, acquired with a laser scanner, can be reduced by up to 40%, whereas the root mean square error is even reduced by up to 56%. The reconstructed 3D models contain much less 3D points, while keeping details like fine structures, the file size is reduced by up to 78% and the computation time of the involved parts is decreased by up to 42%.en
dc.subject.translatedcomputer visionen
dc.subject.translateddense 3D reconstructionen
dc.subject.translatedperspective SfMen
dc.subject.translatedmulti-view reconstructionen
dc.type.statusPeer-revieweden
Vyskytuje se v kolekcích:WSCG 2014: Communication Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
Wasenmuller.pdfPlný text6,04 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/26378

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.