Název: Image-based information visualization: (or how to unify SciVis and InfoVis)
Autoři: Telea, Alexandru
Citace zdrojového dokumentu: WSCG 2017: full papers proceedings: 25th International Conference in Central Europe on Computer Graphics, Visualization and Computer Visionin co-operation with EUROGRAPHICS Association, p. [1].
Datum vydání: 2017
Nakladatel: Václav Skala - UNION Agency
Typ dokumentu: konferenční příspěvek
conferenceObject
URI: wscg.zcu.cz/WSCG2017/!!_CSRN-2701.pdf
http://hdl.handle.net/11025/29538
ISBN: 978-80-86943-44-2
ISSN: 2464–4617 (print)
2464–4625 (CD-ROM)
Klíčová slova: vědecká vizualizace;vizualizace informací
Klíčová slova v dalším jazyce: scientific visualization;information visualization
Abstrakt: For decades, scientific visualization (SciVis) and information visualization (InfoVis) have been related, but still distinctly separated disciplines. Methods and techniques in the two areas have developed relatively separately, causing an arguably unnecessarily separation in the visualization field. Attempts for unification exist, but are largely based on heuristics, and subject to critique from both the SciVis and InfoVis angles. In this talk, we argue that this separation is not necessary, and, up to large extents, artificial. More specifically, we argue that the difference between SciVis and InfoVis is not a matter of design decisions only, but, more centrally, a matter of representing the structure of large data collections by means of smooth, continuous, encodings. We present a way to cast InfoVis along the same principles as the more classical SciVis, based on a continuous, multiscale, spatial representation of data. Putting it simply, we argue that visualizing large amounts of InfoVis data can use encoding techniques which share the same continuity and multiscale principles as most classical spatial SciVis (or image processing) methods use. In turn, we show how this is possible by means of defining appropriate similarity metrics and encoding principles for InfoVis data. This leverages a wealth of data simplification, encoding, and perception principles, since long available for SciVis data, for the richer realm of InfoVis data. We demonstrate our imagebased paradigm by examples covering the visualization of relational, multidimensional, and time-dependent InfoVis.
Práva: © Václav Skala - UNION Agency
Vyskytuje se v kolekcích:WSCG 2017: Full Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
Telea.pdfPlný text349,42 kBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/29538

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.