Title: Modeling and optimal control of multi-winding permanent magnet synchronous motor
Authors: Kalaj, Patrik
Peroutka, Zdeněk
Zeman, Karel
Byrtus, Miroslav
Citation: KALAJ, P., PEROUTKA, Z., ZEMAN, K., BYRTUS, M. Modeling and optimal control of multi-winding permanent magnet synchronous motor. In: Proceedings : IECON 2020 : 46th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE, 2020. s. 4857-4862. ISBN 978-1-72815-414-5.
Issue Date: 2020
Publisher: IEEE
Document type: konferenční příspěvek
conferenceObject
URI: 2-s2.0-85097740872
http://hdl.handle.net/11025/42475
ISBN: 978-1-72815-414-5
Keywords in different language: multi-winding;mathematical model;permanent magnet synchronous motor;simulation;vector control
Abstract in different language: The main contribution of this paper is design of optimal field oriented (vector) control of a multi-winding permanent magnet synchronous motor. Three variants of vector control structures for the multi-winding synchronous motor are presented in the paper. Each of the presented vector controls uses mutual inductance between particular windings differently. Determining the effect of mutual inductance on vector control is necessary for proper control design of the multi-winding synchronous motor. Furthermore, influence of leakage inductance of the stator winding of this motor is also analyzed. The optimal control is recommended based on the simulation result.
Rights: Plný text je přístupný v rámci univerzity přihlášeným uživatelům.
© IEEE
Appears in Collections:Konferenční příspěvky / Conference Papers (KEV)
Konferenční příspěvky / Conference papers (RICE)
OBD

Files in This Item:
File SizeFormat 
Kalaj_09255163.pdf3,13 MBAdobe PDFView/Open    Request a copy


Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/42475

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

search
navigation
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD