Název: Learning analytics at UWB - first approach
Další názvy: Learning Analytics na ZČU - první přiblížení
Autoři: Grolmus, Petr
Rohlíková, Lucie
Citace zdrojového dokumentu: GROLMUS, P. ROHLÍKOVÁ, L. Learning analytics at UWB - first approach. In: DisCo 2018: Overcoming the Challenges and the Barriers in Open Education : 13 th conference reader. Praha: Centre for Higher Education Studies, 2018. s. 271-278. ISBN 978-80-86302-83-6.
Datum vydání: 2018
Nakladatel: Centre for Higher Education Studies
Typ dokumentu: konferenční příspěvek
conferenceObject
URI: http://hdl.handle.net/11025/43113
ISBN: 978-80-86302-83-6
Klíčová slova v dalším jazyce: learning innovation;computers in human behaviour;higher education;educational data mining;learning analytics;student interaction analysis;Learning Management System;prediction study success
Abstrakt: Tento článek představuje první pohled a interpretaci analýzy učení z dat e- learningového systému (Learning Management System - LMS) provozovaného na Západočeské univerzitě v Plzni (ZČU). Předpokládáme, že existují tři typy granularity dat LMS. Prvním typem je nejvyšší úroveň popisující přístupy a využití LMS jakožto celku. Druhým typem jsou data na úrovni kurzu popisující chování  a aktivity všech uživatelů daného kurzu. Posledním typem je uživatelská úroveň dat, která interpretuje aktivity jednotlivých uživatelů kurzu. Příspěvek diskutuje první dva typy granularity založených na reálných datech univerzitního e-learningového systému Moodle. Inspirovali jsme se mnoha předchozími studiemi zaměřenými na učební systémy typu LMS, které se často zaměřují na zejména na predikci akademického úspěchu nebo identifikaci studentů ohrožených studijní neúspěšností (např. Smith a kol. 2012, Jayaprakash a kol., 2014, Baker a kol., 2015). Tato zjištění tvoří základ pro další výzkum, který se zaměřuje na identifikaci chování uživatelů na kurzu a na vyhledání studentů ohrožených studijní neúspěšností.
Abstrakt v dalším jazyce: The focus of this paper is the first look and interpretation of learning analytics data from learning management system (LMS) at the University of West Bohemia in Pilsen (UWB). We claim that there are three types of granularity of LMS data. The first type is top-level, which describes approaches and usage of LMS as a whole. The second one is course-level, which deals with the behaviour and activities of all users as a whole on a specific course. And the last user-type, which interprets the activities of users in the course, and looks for common patterns of behaviour. This paper presents the first two types of granularity, based on real data from the university LMS. We are inspired by many previous studies focusing on learning systems of the LMS that often pay attention especially to academic success prediction or at-risk student identification (e.g. Smith et al. 2012, Jayaprakash et al., 2014, Baker et al., 2015). These findings form the basis for further research on identifying user behaviour on the course, and identifying students at risk of learning failure.
Práva: © Centre for Higher Education Studies
Vyskytuje se v kolekcích:Konferenční příspěvky / Conference papers (KVD)
OBD

Soubory připojené k záznamu:
Soubor VelikostFormát 
DisCo-2018-Overcoming-the-Challenges-and-Barries-in-Open-Education-13th-conference-reader-1.pdf384,97 kBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/43113

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.

hledání
navigace
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD