Název: Transfer Learning and Hyperparameter Optimization for Instance Segmentation with RGB-D Images in Reflective Elevator Environments
Autoři: Reithmeier, Lukas
Krauss, Oliver
Zwettler, Adam Gerald
Citace zdrojového dokumentu: WSCG 2021: full papers proceedings: 29. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 273-282.
Datum vydání: 2021
Nakladatel: Václav Skala - UNION Agency
Typ dokumentu: conferenceObject
konferenční příspěvek
URI: http://hdl.handle.net/11025/45033
ISBN: 978-80-86943-34-3
ISSN: 2464-4617
2464–4625(CD/DVD)
Klíčová slova: segmentace instance;RGB-D data;přenosové učení;reflexní prostředí
Klíčová slova v dalším jazyce: instance segmentation;RGB-D data;transfer learning;reflective environments
Abstrakt v dalším jazyce: Elevators, a vital means for urban transportation, are generally lacking proper emergency call systems besidesan emergency button. In the case of unconscious or otherwise incapacitated passengers this can lead to lethalsituations. A camera-based surveillance system with AI-based alerts utilizing an elevator state machine can helppassengers unable to initiate an emergency call. In this research work, the applicability of RGB-D images asinput for instance segmentation in the highly reflective environment of an elevator cabin is evaluated. For objectsegmentation, a Region-based Convolution Neural Network (R-CNN) deep learning model is adapted to use depthinput data besides RGB by applying transfer learning, hyperparameter optimization and re-training on a newlyprepared elevator image dataset. Evaluations prove that with the chosen strategy, the accuracy of R-CNN instancesegmentation is applicable on RGB-D data, thereby resolving lack of image quality in the noise affected andreflective elevator cabins. The mean average precision (mAP) of 0.753 is increased to 0.768 after the incorporationof additional depth data and with additional FuseNet-FPN backbone on RGB-D the mAP is further increased to0.794. With the proposed instance segmentation model, reliable elevator surveillance becomes feasible as firstprototypes and on-road tests proof.
Práva: © Václav Skala - UNION Agency
Vyskytuje se v kolekcích:WSCG 2021: Full Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
J71.pdfPlný text4,43 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/45033

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.