Název: Influence of sweat on joint and sensor reliability of E-textiles
Autoři: Hirman, Martin
Navrátil, Jiří
Radouchová, Michaela
Štulík, Jiří
Soukup, Radek
Citace zdrojového dokumentu: HIRMAN, M. NAVRÁTIL, J. RADOUCHOVÁ, M. ŠTULÍK, J. SOUKUP, R. Influence of sweat on joint and sensor reliability of E-textiles. Energies, 2022, roč. 15, č. 2, s. 1-14. ISSN: 1996-1073
Datum vydání: 2022
Nakladatel: MDPI
Typ dokumentu: článek
article
URI: 2-s2.0-85122746204
http://hdl.handle.net/11025/47502
ISSN: 1996-1073
Klíčová slova v dalším jazyce: e-textiles;conductive stretchable textile ribbon;nonconductive adhesive compression bonding;soldering onto textile;fully printed graphene-based humidity sensor
Abstrakt: This article addresses reliability under the sweat of interconnection techniques for the mounting surface mounted device (SMD) components and fully printed humidity sensors onto conductive stretchable textile ribbons. Samples underwent testing for the effect of ageing by artificial sweat on their electrical resistance using both alkaline and acidic artificial sweat. The best results in terms of electrical resistance change were obtained for samples soldered to the conductive fibers interwoven in the ribbon. However, this method can damage the ribbon due to the high temperature during soldering and significantly reduce the mechanical properties and flexibility of the ribbon, which can lead to a limited service life of samples. On the other hand, adhesive bonding is a very interesting alternative, where the above‐mentioned properties are preserved, but there is a significant effect of sweat ageing on electrical resistance. The results of fully printed graphene‐based humidity sensors show that, for the intended use of these sensors (i.e., detection of changes in moisture on the human body), usage of the samples is possible, and the samples are sufficiently reliable in the case of sweat degradation. In addition, the response of the sensor to humidity is quite high: 98% at a relative humidity of 98%.
Abstrakt v dalším jazyce: This article addresses reliability under the sweat of interconnection techniques for the mounting surface mounted device (SMD) components and fully printed humidity sensors onto conductive stretchable textile ribbons. Samples underwent testing for the effect of ageing by artificial sweat on their electrical resistance using both alkaline and acidic artificial sweat. The best results in terms of electrical resistance change were obtained for samples soldered to the conductive fibers interwoven in the ribbon. However, this method can damage the ribbon due to the high temperature during soldering and significantly reduce the mechanical properties and flexibility of the ribbon, which can lead to a limited service life of samples. On the other hand, adhesive bonding is a very interesting alternative, where the above‐mentioned properties are preserved, but there is a significant effect of sweat ageing on electrical resistance. The results of fully printed graphene‐based humidity sensors show that, for the intended use of these sensors (i.e., detection of changes in moisture on the human body), usage of the samples is possible, and the samples are sufficiently reliable in the case of sweat degradation. In addition, the response of the sensor to humidity is quite high: 98% at a relative humidity of 98%.
Práva: © authors
Vyskytuje se v kolekcích:Články / Articles (KET)
Články / Articles (RICE)
OBD

Soubory připojené k záznamu:
Soubor VelikostFormát 
Hirman_energies-15-00506-v2.pdf6,83 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/47502

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.

hledání
navigace
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD