Název: Uncertainty-aware Evaluation of Machine Learning Performance in binary Classification Tasks
Autoři: Sperling, Leo
Lämmer, Simon
Hagen, Hans
Scheuermann, Gerik
Gillmann, Christina
Citace zdrojového dokumentu: Journal of WSCG. 2022, vol. 30, no. 1-2, p. 63-71.
Datum vydání: 2022
Nakladatel: Václav Skala - UNION Agency
Typ dokumentu: článek
article
URI: http://hdl.handle.net/11025/49395
ISSN: 1213-6972 (print)
1213-6964 (on-line)
Klíčová slova: hodnotící opatření;nejistota-uvědomění;strojové učení
Klíčová slova v dalším jazyce: evaluation measures;uncertainty-awareness;machine learning
Abstrakt v dalším jazyce: Machine learning has become a standard tool in computer vision. Nowadays, neural networks are one of the most prominent representatives in this class of algorithms that usually require training and evaluation to work as desired. There exist a variety of evaluation metrics to determine the quality of a trained neural network, which are usually threshold dependent. This results in massive changes in the resulting evaluation when the threshold is changed slightly. Further, measurements of uncertainty such as resulting from Bayesian approaches, are not considered in this analysis. In this paper, we present evaluation metrics for machine learning approaches that are able to attach a probability distribution to the utilized threshold and include uncertainty measures. We demonstrate the applicability of our approach by applying the defined metrics to a real-world example where a Bayesian neural network has been used to predict stroke lesions.
Práva: © Václav Skala - UNION Agency
Vyskytuje se v kolekcích:Volume 30, Number 1-2 (2021)

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
B71-full.pdfPlný text2,1 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/49395

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.