Název: | Uncertainty-aware Evaluation of Machine Learning Performance in binary Classification Tasks |
Autoři: | Sperling, Leo Lämmer, Simon Hagen, Hans Scheuermann, Gerik Gillmann, Christina |
Citace zdrojového dokumentu: | Journal of WSCG. 2022, vol. 30, no. 1-2, p. 63-71. |
Datum vydání: | 2022 |
Nakladatel: | Václav Skala - UNION Agency |
Typ dokumentu: | článek article |
URI: | http://hdl.handle.net/11025/49395 |
ISSN: | 1213-6972 (print) 1213-6964 (on-line) |
Klíčová slova: | hodnotící opatření;nejistota-uvědomění;strojové učení |
Klíčová slova v dalším jazyce: | evaluation measures;uncertainty-awareness;machine learning |
Abstrakt v dalším jazyce: | Machine learning has become a standard tool in computer vision. Nowadays, neural networks are one of the most prominent representatives in this class of algorithms that usually require training and evaluation to work as desired. There exist a variety of evaluation metrics to determine the quality of a trained neural network, which are usually threshold dependent. This results in massive changes in the resulting evaluation when the threshold is changed slightly. Further, measurements of uncertainty such as resulting from Bayesian approaches, are not considered in this analysis. In this paper, we present evaluation metrics for machine learning approaches that are able to attach a probability distribution to the utilized threshold and include uncertainty measures. We demonstrate the applicability of our approach by applying the defined metrics to a real-world example where a Bayesian neural network has been used to predict stroke lesions. |
Práva: | © Václav Skala - UNION Agency |
Vyskytuje se v kolekcích: | Volume 30, Number 1-2 (2021) |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
B71-full.pdf | Plný text | 2,1 MB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/49395
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.