Název: | Fast Shape Classification Using Kolmogorov-Smirnov Statistics |
Autoři: | Köhler, Alexander Rigi, Ashkan Breuß, Michael |
Citace zdrojového dokumentu: | WSCG 2022: full papers proceedings: 30. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 172-180. |
Datum vydání: | 2022 |
Nakladatel: | Václav Skala - UNION Agency |
Typ dokumentu: | conferenceObject |
URI: | http://hdl.handle.net/11025/49592 |
ISBN: | 978-80-86943-33-6 |
ISSN: | 2464-4617 |
Klíčová slova: | statistická analýza tvaru;klasifikace tvaru;tvarová podobnost;Kolmogorov-Smirnov;testování hypotéz |
Klíčová slova v dalším jazyce: | statistical shape analysis;shape classification;shape similarity;Kolmogorov-Smirnov;hypothesis testing |
Abstrakt v dalším jazyce: | The fast classification of shapes is an important problem in shape analysis and of high relevance for many possible applications. In this paper, we consider the use of very fast and easy to compute statistical techniques for assessing shapes, which may for instance be useful for a first similarity search in a shape database. To this end, we con- struct shape signatures at hand of stochastic sampling of distances between points of interest in a given shape. By employing the Kolmogorov-Smirnov statistics we then propose to formulate the problem of shape classification as a statistical hypothesis test that enables to assess the similarity of the signature distributions. In order to illus- trate some important properties of our approach, we explore the use of simple sampling techniques. At hand of experiments conducted with a variety of shapes in two dimensions, we give a discussion of potentially interesting features of the method. |
Práva: | © Václav Skala - UNION Agency |
Vyskytuje se v kolekcích: | WSCG 2022: Full Papers Proceedings |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
C37-full.pdf | Plný text | 1,54 MB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/49592
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.