Název: Fitting Parameters for Procedural Plant Generation
Autoři: Garifullin, Albert
Shcherbakov, Alexandr
Frolov, Vladimir
Citace zdrojového dokumentu: WSCG 2022: full papers proceedings: 30. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 282-288.
Datum vydání: 2022
Nakladatel: Václav Skala - UNION Agency
Typ dokumentu: conferenceObject
URI: http://hdl.handle.net/11025/49606
ISBN: 978-80-86943-33-6
ISSN: 2464-4617
Klíčová slova: 3D modelování;modelování rostlin;rekonstrukce stromu;genetické algoritmy
Klíčová slova v dalším jazyce: 3D modeling;plants modeling;tree reconstruction;genetic algorithms
Abstrakt v dalším jazyce: We propose a novel method to obtain a 3D model of a tree based on a single input image by fitting parameters for some procedural plant generator. Unlike other methods, our approach can work with any plant generator, treating it as a black-box function. It is also possible to specify the desired characteristics of the plant, such as the geometric complexity of the model or its size. We propose a similarity function between the given image and generated model, that better catches the significant differences between tree shapes. To find the appropriate parameter set, we use a specific variant of a genetic algorithm designed for this purpose to maximize similarity function. This approach can greatly simplify the artist's work. We demonstrate the results of our algorithm with several procedural generators, from a very simple to a fairly advanced one.
Práva: © Václav Skala - UNION Agency
Vyskytuje se v kolekcích:WSCG 2022: Full Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
B13-full.pdfPlný text1,81 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/49606

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.