Title: | Linear Fusion with Element-Wise Knowledge |
Authors: | Ajgl, Jiří Straka, Ondřej |
Citation: | AJGL, J. STRAKA, O. Linear Fusion with Element-Wise Knowledge. In Proceedings of the 25th International Conference on Information Fusion, FUSION 2022. New York: IEEE, 2022. s. 1-8. ISBN: 978-1-73774-972-1 , ISSN: neuvedeno |
Issue Date: | 2022 |
Publisher: | IEEE |
Document type: | konferenční příspěvek ConferenceObject |
URI: | 2-s2.0-85136596359 http://hdl.handle.net/11025/50800 |
ISBN: | 978-1-73774-972-1 |
ISSN: | neuvedeno |
Keywords in different language: | Covariance Intersection;distributed estimation;multisensor data fusion;partially known correlation |
Abstract in different language: | The process of combining data and estimates is inherent in estimation problems. This paper focuses on the linear fusion under the assumption that only some elements of the cross-correlation matrix of the estimation errors are known. Configurations of the knowledge are discussed individually for up to five estimates. For an arbitrary number of estimates, a general construction of upper bounds of the joint mean square error matrix is proposed. Last, the relation with the Split Covariance Intersection fusion is discussed. © 2022 International Society of Information Fusion. |
Rights: | Plný text je přístupný v rámci univerzity přihlášeným uživatelům. © International Society of Information Fusion |
Appears in Collections: | Konferenční příspěvky / Conference papers (NTIS) OBD |
Files in This Item:
File | Size | Format | |
---|---|---|---|
article_FUSION22_AjSt.pdf | 670,49 kB | Adobe PDF | View/Open Request a copy |
Please use this identifier to cite or link to this item:
http://hdl.handle.net/11025/50800
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.