Title: | Efficient Implementation of Marginal Particle Filter by Functional Density Decomposition |
Authors: | Straka, Ondřej Duník, Jindřich |
Citation: | STRAKA, O. DUNÍK, J. Efficient Implementation of Marginal Particle Filter by Functional Density Decomposition. In Proceedings of the 25th International Conference on Information Fusion, FUSION 2022. Linköping, Sweden: IEEE, 2022. s. 1-8. ISBN: 978-1-73774-972-1 , ISSN: neuvedeno |
Issue Date: | 2022 |
Publisher: | IEEE |
Document type: | konferenční příspěvek ConferenceObject |
URI: | 2-s2.0-85136560671 http://hdl.handle.net/11025/51460 |
ISBN: | 978-1-73774-972-1 |
ISSN: | neuvedeno |
Keywords in different language: | state estimation;particle filter;marginal particle filter;functional tensor decomposition;non-negative decomposition |
Abstract in different language: | The paper considers the solution to the state estimation problem of nonlinear dynamic stochastic systems by the particle filters. It focuses on the marginal particle filter algorithms which generate samples directly in the marginal space for the recent state. Their standard implementation calculates the sample weights by combining the samples from two consecutive time instants in the transition and proposal density function evaluations. This results in computational complexity quadratic in sample size. The paper proposes an efficient implementation of the marginal particle filter for which a functional tensor decomposition of the transition and proposal densities is calculated. The computational complexity of the proposed implementation is linear in sample size and the decomposition rank can be used to achieve a trade-off between accuracy and computational costs. The balance between the complexity and the estimate quality can be tuned by selecting the rank of the decomposition. The proposed implementation is demonstrated using two numerical examples with a univariate non-stationary growth model and terrain-aided navigation scenario. |
Rights: | Plný text je přístupný v rámci univerzity přihlášeným uživatelům. © IEEE |
Appears in Collections: | Konferenční příspěvky / Conference papers (NTIS) Konferenční příspěvky / Conference Papers (KKY) OBD |
Files in This Item:
File | Size | Format | |
---|---|---|---|
article_FUSION2022_StDu.pdf | 464,02 kB | Adobe PDF | View/Open Request a copy |
Please use this identifier to cite or link to this item:
http://hdl.handle.net/11025/51460
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.