Title: Geometry effect of irrigation storage basin on particles removal efficiency: A computational fluid dynamics study
Authors: Bouisfi, Firdaouss
Bouisfi, Achraf
Bouhali, Mohamed
Ouarriche, Hamza
Lamzoud, Khalid
Chaoui, Mohamed
Citation: Applied and Computational Mechanics. 2023, vol. 17, no. 1, p. 5-18.
Issue Date: 2023
Publisher: University of West Bohemia
Document type: article
URI: http://hdl.handle.net/11025/54291
ISSN: 1802-680X (Print)
2336-1182 (Online)
Keywords: kapkové zavlažování;zásobní nádrž na zavlažování;účinnost odstraňování;výpočetní dynamika tekutin
Keywords in different language: drip irrigation;irrigation storage basin;removal efficiency;computational fluid dynamics
Abstract in different language: Drip irrigation requires the use of high quality water to avoid emitters clogging and the wear of hydraulic pumps and sand filters. Investing in an irrigation storage basin is not only beneficial to meet crop water requirements but also to remove naturally suspended solids by sedimentation. However, the design and sizing of an irrigation storage basin is usually based only on irrigation water needs and plant area without taking into consideration that the shape and size of the basin can also have an effect on the removal efficiency. Moreover, storage volume can be achieved by different combinations of length, width and depth. The present paper studies the effect of irrigation storage basin geometry on its performance in settling down suspended sediments. The methodology adopted in this study is based on the computational fluid dynamics using ANSYS Fluent. Specific experimental results taken from the literature are used to confirm the reliability of the numerical simulations to describe the flow field. First, a parametric study is executed in order to identify the effect of each basin dimensions. Then, trap efficiency is calculated for twenty basins having the same capacity of storage and different geometries in order to select the optimal dimensions. Results show that the removal efficiency is very sensitive to basin size, especially to its depth and length. Nevertheless, for a specific capacity of storage, two different dimensionless parameters can be used to select the optimal size: the length to depth ratio and the length to width ratio. In cases, where the depth value is required due to soil type or land surface, the second ratio can be used.
Rights: © University of West Bohemia
Appears in Collections:Volume 17, number 1 (2023)
Volume 17, number 1 (2023)

Files in This Item:
File Description SizeFormat 
800-4677-1-PB (1).pdfPlný text6,5 MBAdobe PDFView/Open


Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/54291

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.