Full metadata record
DC FieldValueLanguage
dc.contributor.authorAbushamah, Hussein Abdulkareem Sale
dc.contributor.authorBurian, Ondřej
dc.contributor.authorŠkoda, Radek
dc.date.accessioned2023-10-30T11:00:21Z-
dc.date.available2023-10-30T11:00:21Z-
dc.date.issued2023
dc.identifier.citationABUSHAMAH, HAS. BURIAN, O. ŠKODA, R. Design and Operation Optimization of a Nuclear Heat-Driven District Cooling System. International Journal of Energy Research, 2023, roč. 23, č. August 2023, s. nestránkováno. ISSN: 0363-907Xcs
dc.identifier.issn0363-907X
dc.identifier.uri2-s2.0-85171375380
dc.identifier.urihttp://hdl.handle.net/11025/54575
dc.format
dc.format18 s.cs
dc.format.mimetypeapplication/pdf
dc.language.iso
dc.language.isoenen
dc.publisherHindawien
dc.relation.ispartofseriesInternational Journal of Energy Researchen
dc.rights© The Author(s)en
dc.titleDesign and Operation Optimization of a Nuclear Heat-Driven District Cooling Systemen
dc.typečlánekcs
dc.typearticleen
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedCarbon-free thermally driven district cooling systems (DCS) can effectively mitigate the excessive electricity consumption and carbon emissions associated with the cooling sector. This study proposes a DCS that employs nuclear heat as the primary energy source. The system comprises three main subsystems: heat station, heat transmission, and cooling station. A heat-only small modular reactor called Teplator, gas boilers, and heat storage are considered to supply the heat required to drive absorption chillers; cold storage and compression chillers are the supplementary units. The technoeconomic aspects of the system are formulated, and an algorithm is developed to determine the optimal design and operation. The method is examined for supplying a typical cooling demand profile with a peak of 2050 MWc. The resulting optimized design includes 11 nuclear plants (150 MWt each), 20 000 MWth heat storage, and 1.9 m diameter heat supply/return pipes. Absorption chillers with a total capacity of 1424 MWc are determined, covering 92% of the total cooling demand, and 244 MWc of compression chillers and 20 000 MWch of cold storage are found to cover the peak and enhance the load following. This system saved 69% of the electricity consumption and carbon emissions and 34% of the costs compared with an electric-based scenario.en
dc.subject.translatedteplatoren
dc.subject.translatednuclear energyen
dc.subject.translateddistrict coolingen
dc.subject.translatedoptimizationen
dc.identifier.doi10.1155/2023/7880842
dc.type.status
dc.type.statusPeer-revieweden
dc.identifier.document-number1065094000003
dc.identifier.obd43940183
dc.project.IDSGS-2021-018/Analýza, simulace a pokročilé vyhodnocení dodávky a spotřeby elektrické energie při dodržení optimálních spolehlivostních a kvalitativních parametrů s respektováním integrace obnovitelných zdrojů, akumulace a elektromobility do elektrizační soustavy při využití aktuálních, inovativních metod teoretického a aplikačního výzkumu v elektroenergeticecs
dc.project.IDTK03030109/Vývoj technologického celku pro inovativní ukládání energií s využitím fázové změny materiálucs
Appears in Collections:Články / Articles (RICE)
Články / Articles (KEE)
OBD

Files in This Item:
File SizeFormat 
Abushamah_7880842.pdf1,48 MBAdobe PDFView/Open


Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/54575

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

search
navigation
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD