Název: Cocoa beans moisture content prediction using Machine Learning Model, based on the color image features
Autoři: Ako, Joel E.
Nzi, Camille E.
Kpalma, Kidiyo
Citace zdrojového dokumentu: WSCG 2024: full papers proceedings: 32. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 237-246.
Datum vydání: 2024
Nakladatel: Václav Skala - UNION Agency
Typ dokumentu: konferenční příspěvek
conferenceObject
URI: http://hdl.handle.net/11025/57395
ISSN: 2464–4625 (online)
2464–4617 (print)
Klíčová slova: kakaové boby;F-test;obsah vlhkosti;barevné vlastnosti;RReliefF;regrese;strojové učení
Klíčová slova v dalším jazyce: cocoa beans;F-test;moisture content;color features;RReliefF;regression;machine learning
Abstrakt v dalším jazyce: The moisture content of cocoa beans is an essential factor in their quality. Modeling it during drying is still problematic due to the wide variation in drying conditions and the wide variation in cocoa bean varieties. This article aims to investigate the possibility of modeling the moisture content of cocoa beans as a function of RGB images features of unshelled cocoa beans. The approach is to extract features, analyze them and then use the most relevant ones to study Machine Learning models. Features are extracted by calculating mean, standard deviation, energy, entropy, kurtosis and skewness of the components of the rgb (RGB normalized), HSV, L*a*b*, YCbCr color spaces without the brightness components. These features are extracted from 4 types of samples, namely 10, 30, 50 and 70 bean samples per image. Features analysis using the F-test and RReliefF methods shows that the features based on the energy and entropy of the components rg, yb, Cr, Cb, a*, b* and h* are fairly relevant for predicting the water content of cocoa beans. However, they are highly correlated. The selected predictors allow the analysis of linear models, such as Ridge Regression (RR), PLS Regression (PLSR) and non-linear models, such as polynomial, Support Vector Regression (SVR) with rbf kernel, and Decision Trees Regression (DTR). Except RR and PLSR, the other models were preceded by a principal component analysis (PCA) to handle the collinearity problem. The non-linear models give good predictions for the training dataset, with coefficients of determination R 2 ranging from 0.94 to 0.96 and RMSE from 3.85 to 4.81. However, there is a significant difference between these results and the predictions of the new datasets. RR and PLSR are stable models, but their predictions are less than non-linear ones. It is therefore possible to predict the moisture content of cocoa beans from the features of RGB images
Práva: © Václav Skala - UNION Agency
Vyskytuje se v kolekcích:WSCG 2024: Full Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
C31-2024.pdfPlný text2,43 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/57395

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.