Název: 3D Multi-Criteria Design Generation and Optimization of an Engine Mount for an Unmanned Air Vehicle Using a Conditional Variational Autoencoder
Autoři: Eilermann, Sebastian
Petroll, Christoph
Hoefer, Philipp
Niggemann, Oliver
Citace zdrojového dokumentu: WSCG 2024: full papers proceedings: 32. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 207-216.
Datum vydání: 2024
Nakladatel: Václav Skala - UNION Agency
Typ dokumentu: konferenční příspěvek
conferenceObject
URI: http://hdl.handle.net/11025/57400
ISSN: 2464–4625 (online)
2464–4617 (print)
Klíčová slova: 3D generace;multikriteriální;optimalizace;držák motoru;podmíněný variační autokodér;simulace založené na hodnocení
Klíčová slova v dalším jazyce: 3D Generation;multi-criteria;optimization;engine mount;conditional variational autoencoder;simulation based evaluation
Abstrakt v dalším jazyce: One of the most promising developments in computer vision in recent years is the use of generative neural net works for functionality condition-based 3D design reconstruction and generation. Here, neural networks learn dependencies between functionalities and a geometry in a very effective way. For a neural network the function alities are translated in conditions to a certain geometry. But the more conditions the design generation needs to reflect, the more difficult it is to learn clear dependencies. This leads to a multi criteria design problem due various conditions, which are not considered in the neural network structure so far. In this paper, we address this multi-criteria challenge for a 3D design use case related to an unmanned aerial vehicle (UAV) motor mount. We generate 10,000 abstract 3D designs and subject them all to simulations for three physical disciplines: mechanics, thermodynamics, and aerodynamics. Then, we train a Conditional Variational Autoencoder (CVAE) using the geometry and corresponding multicriteria functional constraints as input. We use our trained CVAE as well as the Marching cubes algorithm to generate meshes for simulation based evaluation. The results are then evaluated with the generated UAV designs. Subsequently, we demonstrate the ability to generate optimized designs under self-defined functionality conditions using the trained neural network
Práva: © Václav Skala - UNION Agency
Vyskytuje se v kolekcích:WSCG 2024: Full Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
C17-2024.pdfPlný text3,42 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/57400

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.