Název: | 3D Multi-Criteria Design Generation and Optimization of an Engine Mount for an Unmanned Air Vehicle Using a Conditional Variational Autoencoder |
Autoři: | Eilermann, Sebastian Petroll, Christoph Hoefer, Philipp Niggemann, Oliver |
Citace zdrojového dokumentu: | WSCG 2024: full papers proceedings: 32. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 207-216. |
Datum vydání: | 2024 |
Nakladatel: | Václav Skala - UNION Agency |
Typ dokumentu: | konferenční příspěvek conferenceObject |
URI: | http://hdl.handle.net/11025/57400 |
ISSN: | 2464–4625 (online) 2464–4617 (print) |
Klíčová slova: | 3D generace;multikriteriální;optimalizace;držák motoru;podmíněný variační autokodér;simulace založené na hodnocení |
Klíčová slova v dalším jazyce: | 3D Generation;multi-criteria;optimization;engine mount;conditional variational autoencoder;simulation based evaluation |
Abstrakt v dalším jazyce: | One of the most promising developments in computer vision in recent years is the use of generative neural net works for functionality condition-based 3D design reconstruction and generation. Here, neural networks learn dependencies between functionalities and a geometry in a very effective way. For a neural network the function alities are translated in conditions to a certain geometry. But the more conditions the design generation needs to reflect, the more difficult it is to learn clear dependencies. This leads to a multi criteria design problem due various conditions, which are not considered in the neural network structure so far. In this paper, we address this multi-criteria challenge for a 3D design use case related to an unmanned aerial vehicle (UAV) motor mount. We generate 10,000 abstract 3D designs and subject them all to simulations for three physical disciplines: mechanics, thermodynamics, and aerodynamics. Then, we train a Conditional Variational Autoencoder (CVAE) using the geometry and corresponding multicriteria functional constraints as input. We use our trained CVAE as well as the Marching cubes algorithm to generate meshes for simulation based evaluation. The results are then evaluated with the generated UAV designs. Subsequently, we demonstrate the ability to generate optimized designs under self-defined functionality conditions using the trained neural network |
Práva: | © Václav Skala - UNION Agency |
Vyskytuje se v kolekcích: | WSCG 2024: Full Papers Proceedings |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
C17-2024.pdf | Plný text | 3,42 MB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/57400
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.