Full metadata record
DC pole | Hodnota | Jazyk |
---|---|---|
dc.contributor.author | Komar, Alexander | |
dc.contributor.author | Kammerer, Michael | |
dc.contributor.author | Barzegar Khalilsaraei, Saeedeh | |
dc.contributor.author | Augsdoerfer, Ursula | |
dc.contributor.editor | Skala, Václav | |
dc.date.accessioned | 2024-07-31T18:36:16Z | - |
dc.date.available | 2024-07-31T18:36:16Z | - |
dc.date.issued | 2024 | |
dc.identifier.citation | WSCG 2024: full papers proceedings: 32. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p.325-330. | en |
dc.identifier.issn | 2464–4625 (online) | |
dc.identifier.issn | 2464–4617 (print) | |
dc.identifier.uri | http://hdl.handle.net/11025/57406 | |
dc.format | 6 s. | cs |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | en |
dc.publisher | Václav Skala - UNION Agency | en |
dc.rights | © Václav Skala - UNION Agency | en |
dc.subject | neuronové sítě | cs |
dc.subject | GAN | cs |
dc.subject | signed distance fields | cs |
dc.title | LatEd: A Geometric Latent Vector Editor | en |
dc.type | konferenční příspěvek | cs |
dc.type | conferenceObject | en |
dc.rights.access | openAccess | en |
dc.type.version | publishedVersion | en |
dc.description.abstract-translated | Using a neural network approach, a shape may be compressed to a one-dimensional vector, the so-called latent dimension or latent vector. This latent shape dimension is examined in this paper. This latent vector of a shape is used to identify the corresponding shape in a database. Two types of networks are evaluated in terms of lookup accuracy and reconstruction quality using a database of Lego pieces. Even with small training set a reasonable robustness to rotation and translation of the shapes was achieved. While a human can interpret uncompressed data just fine, the compressed values of the network might be cryptic and thus offer no insight regarding the uncompressed input. Therefore, we introduce a latent dimension editor which allows the user to examine the geometry content of the latent vector and its influence on the decoded shape. The latent vector editor enables the visual exploration of the latent vector, by making changes to the latent vector visible in real-time via a 3D visualization of the reconstructed object. | en |
dc.subject.translated | neural networks | en |
dc.subject.translated | GAN | en |
dc.subject.translated | signed distance fields | en |
dc.identifier.doi | https://doi.org/10.24132/10.24132/CSRN.3401.35 | |
dc.type.status | Peer reviewed | en |
Vyskytuje se v kolekcích: | WSCG 2024: Full Papers Proceedings |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
D13-2024.pdf | Plný text | 5,05 MB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/57406
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.