Název: Particle-Based Fluid Surface Rendering with Neural Networks
Autoři: Burkus, Viktória
Kárpáti, Attila
Szécsi, László
Citace zdrojového dokumentu: WSCG 2021: full papers proceedings: 29. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 237-244.
Datum vydání: 2021
Nakladatel: Václav Skala - UNION Agency
Typ dokumentu: conferenceObject
konferenční příspěvek
URI: http://hdl.handle.net/11025/45029
ISBN: 978-80-86943-34-3
ISSN: 2464-4617
2464–4625(CD/DVD)
Klíčová slova: počítačová grafika;metaballs;generativní neurální síť;rekonstrukce povrchu
Klíčová slova v dalším jazyce: computer graphics;metaballs;generative neural network;surface reconstruction
Abstrakt v dalším jazyce: Surface reconstruction for particle-based fluid simulation is a computational challenge on par with the simula-tion itself. In real-time applications, splatting-style rendering approaches based on forward rendering of particleimpostors are prevalent, but they suffer from noticeable artifacts.In this paper, we present a technique that combines forward rendering simulated features with deep-learning imagemanipulation to improve the rendering quality of splatting-style approaches to be perceptually similar to ray tracingsolutions, circumventing the cost, complexity, and limitations of exact fluid surface rendering by replacing it withthe flat cost of a neural network pass. Our solution is based on the idea of training generative deep neural networkswith image pairs consisting of cheap particle impostor renders and ground truth high quality ray-traced images.
Práva: © Václav Skala - UNION Agency
Vyskytuje se v kolekcích:WSCG 2021: Full Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
J29.pdfPlný text6,22 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/45029

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.