Název: Reedova hypotéza pro vrcholové barvení grafů
Další názvy: Reed's conjecture for a vertex colouring of graphs
Autoři: Kalvas, Karel Antonín
Vedoucí práce/školitel: Ekstein Jan, RNDr. Ph.D.
Oponent: Holub Přemysl, Doc. RNDr. Ph.D.
Datum vydání: 2024
Nakladatel: Západočeská univerzita v Plzni
Typ dokumentu: bakalářská práce
URI: http://hdl.handle.net/11025/57293
Klíčová slova: vrcholové barvení;reedova hypotéza;chromatické číslo;klikovost;maximální stupeň;zakázané podgrafy
Klíčová slova v dalším jazyce: vertex coloring;reed's conjecture;chromatic number;clique number;maximum degree;forbidden subgraphs
Abstrakt: V této práci se seznámíme s vrcholovým barvením grafů. Následně představíme Reedovu hypotézu (B. Reed. omega, Delta, and chi), která dává horní odhad na chromatické číslo grafu G jako chi(G) <= ceil((omega(G) + Delta(G)+1)/2). Následně shrneme doposud známé výsledky z oblasti Reedovy hypotézy a zaměříme se na výsledky které, uveřejnili Aravind a kol. v článku Bounding chi in terms of omega and Delta for some classes of graphs, kde mimo jiné ukázali, že třída {Chair, House, Bull, K_1+C_4}-free grafů a třída {Chair, House, Bull, Dart}-free grafů splňuje Reedovu hypotézu. Ve snaze o oslabení požadavku na počet zakázaných podgrafů v rámci vlastních výsledků uvedeme třídu grafů, která splňuje Reedovu hypotézu a rozšiřuje výše zmíněné výsledky.
Abstrakt v dalším jazyce: In this work, we will introduce the concept of vertex colouring of graphs. Subsequently, we will present Reed's conjecture (B. Reed. omega, Delta, and chi), which provides an upper bound on the chromatic number of a graph G, expressed as chi(G) <= ceil((omega(G) + Delta(G)+1)/2). Following that we will then summarize the known results in the area of Reed's conjecture and focus on the results published by Aravind et al. in article Bounding chi in terms of omega and Delta for some classes of graphs, where they proved that the class of {Chair, House, Bull, K_1+C_4}-free graphs and the class of {Chair, House, Bull, Dart}-free graphs satisfy Reed's conjecture. In an attempt to weaken the requirement on the number of forbidden subgraphs within our own results, we will introduce a class of graphs that satisfies Reed's conjecture and extends the aforementioned results.
Práva: Plný text práce je přístupný bez omezení
Vyskytuje se v kolekcích:Bakalářské práce / Bachelor´s works (KMA)

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
Kalvas - BP.pdfPlný text práce6,66 MBAdobe PDFZobrazit/otevřít
PV_Kalvas.pdfPosudek vedoucího práce665,8 kBAdobe PDFZobrazit/otevřít
PO_Kalvas.pdfPosudek oponenta práce1,21 MBAdobe PDFZobrazit/otevřít
Prubeh_Kalvas.pdfPrůběh obhajoby práce172,94 kBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/57293

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.